Remarks on Orbits and Dynamical Parallaxes
نویسندگان
چکیده
منابع مشابه
Remarks on Braid Theory and the characterisation of periodic orbits
The relationship between Braid Theory and the organisation of periodic orbits of dynamical systems is considered. It is shown that for some (physically relevant) 3-d flows the characterisation of periodic orbits by means of Braid Theory can be done on the Poincaré surface in an efficient way. The result is a thread-less graphical presentation of a braid class. We discuss extensions of this appr...
متن کاملA Few Remarks on Periodic Orbits for Planar Billiard Tables
I announce a solution of the conjecture about the measure of periodic points for planar billiard tables. The theorem says that if Ω ⊂ R is a compact domain with piecewise C boundary, then the set of periodic orbits for the billiard in Ω has measure zero. Here I outline a proof. A complete version will appear elsewhere.
متن کاملSome Remarks on Periodic Billiard Orbits in Rational Polygons
A billiard ball, i.e. a point mass, moves inside a polygon Q with unit speed along a straight line until it reaches the boundary ∂Q of the polygon, then instantaneously changes direction according to the mirror law: “the angle of incidence is equal to the angle of reflection,” and continues along the new line (Fig. 1(a)). Despite the simplicity of this description there is much that is unknown ...
متن کاملSome remarks on Richardson orbits in complex symmetric spaces
Roger W. Richardson proved that any parabolic subgroup of a complex semisimple Lie group admits an open dense orbit in the nilradical of its corresponding parabolic subalgebra. In the case of complex symmetric spaces we show that there exist some large classes of parabolic subgroups for which the analogous statement which fails in general, is true. Our main contribution is the extension of a th...
متن کاملPeriodic orbits and dynamical spectra (Survey)
Basic results in the rigorous theory of weighted dynamical zeta functions or dynamically defined generalized Fredholm determinants are presented. Analytic properties of the zeta functions or determinants are related to statistical properties of the dynamics via spectral properties of dynamical transfer operators, acting on Banach spaces of observables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Astronomical Union Colloquium
سال: 1973
ISSN: 0252-9211
DOI: 10.1017/s0252921100150353